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Discrete time survival analysis of lamb mortality in
a terminal sire composite population1
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ABSTRACT: Mortality records of 8,642 lambs from a
composite population at the U.S. Meat Animal Research
Center during the first year of life were studied using
discrete survival analyses. Lamb mortality was studied
across periods from birth to weaning, birth to 365 d of
age, and weaning to 365 d of age. Animal–time data
sets were created for each period using different time
intervals: daily, weekly, fortnightly, and monthly. Each
data set was analyzed using logistic and complemen-
tary log–log sire, animal, and maternal effects models.
Explanatory variables included in the models were du-
ration of time interval, sex, type of birth, contemporary
group, age of dam, and type of upbringing (nursery or
not). Similar estimates of explanatory variables were
obtained within the same period across models and dif-
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Introduction

The survival of lambs is an important component
of sheep production. Effective genetic improvement of
lamb survival is based on accurate and precise esti-
mates of genetic parameters. When lamb mortality has
been analyzed as a cumulative binary variable to an
arbitrary or predetermined time point, such as wean-
ing, the resulting heritability estimates ranged between
0.0 and 0.1 (e.g., Fogarty, 1995; Lopez-Villalobos and
Garrick, 1999). However, disadvantages of the cumula-
tive binary approach include loss of information due
to an arbitrary choice of period, failure to account for
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ferent time intervals. Heritability estimates from the
complementary log–log models were greater than those
from the comparable logistic models because of the dif-
ference in variance of the respective link functions. Her-
itability estimates from the complementary log–log sire
model ranged from 0.13 to 0.21 for all periods. These
estimates were greater than the complementary log–
log animal model estimates that ranged from 0.04 to
0.12. Maternal effects were important early in life, with
the maternal heritability slightly greater than the di-
rect additive heritability. Negative correlations (−0.72
to −0.65) between direct additive and maternal effects
was estimated. The similarity of results among survival
analysis methods demonstrates that the discrete meth-
odology is a viable alternative to estimate variance com-
ponents in livestock survival data.

censoring (animals leave the study before the event has
occurred), and failure to account for covariate interac-
tions with time or covariates that vary with time (Alli-
son, 1997).

Continuous time survival analysis provides an alter-
native that overcomes many of the limitations of a cu-
mulative binary approach (Allison, 1997). An empirical
comparison of the continuous time and cumulative bi-
nary approaches reported by Southey et al. (2001) re-
sulted in similar estimates of fixed effects, as antici-
pated by Ingram and Kleinman (1989) and Doskum and
Gasko (1990). Southey et al. (2001) also reported that
greater heritability estimates were obtained from the
continuous time approaches than the cumulative bi-
nary approaches.

Often, the actual time of mortality is unavailable,
but can be inferred by failure of an animal to appear
for subsequent measurements. In this situation, the
alternative discrete time methods can be used instead
of the continuous time methods without the disadvan-
tages of a cumulative binary approach. Discrete time
methods do not require the specific time of mortality
because an individual’s survival history is defined by a
set of discrete time intervals and can be analyzed using
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a binary regression model (Fahrmeir and Tutz, 1994;
Allison, 1997). The objectives of this study were to apply
discrete time methods to lamb mortality data using
mixed effects models.

Materials and Methods

Description of Population and Management

Mortality was recorded on lambs from the F3 and
advanced generations of a terminal sire composite pop-
ulation (breed composition: 50% Columbia, 25% Hamp-
shire, and 25% Suffolk) at the U.S. Meat Animal Re-
search Center, Clay Center, Nebraska. Further descrip-
tion of the lamb mortality records used in the present
analysis can be found in Southey et al. (2001), and the
population and management were described by Ley-
master (1991) and Mousa et al. (1999).

Lamb records were available from 1985 through 1997
with the date and cause of mortality determined by
necropsy for lambs that died. Records from lambs that
lost their identification were removed from the data
prior to any analysis since the status of these lambs
was unknown for any of the ages considered. After ap-
proximately 20 wk of age, the culling of surplus lambs
from the main flock started on a regular basis and culled
lambs were treated as censored on the day of culling.
The pedigree consisted of 8,642 lambs from 299 sires
and 2,475 dams. Analyses were conducted on three peri-
ods: birth to weaning, weaning to 365 d of age, and
birth to 365 d of age with mortality rates of 15.2, 7.6,
and 21.6%, respectively.

Animal–time data sets were created for each period
using different durations of time intervals and actual
survival age as described by Allison (1997). The re-
sulting data sets consisted of a binary response variable
that indicated either occurrence or nonoccurrence of
mortality for each discrete time interval observed for
each animal in every period. Two cases illustrate the
data structure: In the first case, an animal that is alive
for four time intervals would have four nonoccurrence
mortality observations, one for each of the four time
intervals. In the second case, an animal that was only
alive for two periods would have only two records, where
the first time interval is recorded as a nonoccurrence
of mortality and the second time interval is recorded
as an occurrence of mortality. Within all periods, time
interval durations of weeks and fortnights were ana-
lyzed. In addition, a daily duration time interval was
studied for birth to weaning and a monthly duration
time interval was studied for weaning to 365 d of age
and birth to 365 d of age.

Statistical Methods

The animal–time data sets were analyzed by model-
ing the discrete hazard function, λ(ti), with k explana-
tory variables for each animal:

λ(ti) = g



∑
k

j=1

xijβj





[1]

where ti is the observed time of mortality of the ith
animal, g(�) is a link function, xij is the jth explanatory
variable for the ith animal, and βj is the regression
coefficient associated with the jth explanatory variable.
This model results from the equivalence between the
discrete time survival likelihood and the likelihood from
a binary response model (Fahrmeir and Tutz, 1994).
An alternative perspective follows from the definition
of the conditional probabilities (Allison, 1997). The dis-
crete hazard function or conditional probability for the
risk of mortality given that the time interval is reached
is given by:

λ(ti) = Pr(Ti = ti|Ti > ti)

where Ti = ti denotes mortality within the time interval
(Fahrmeir and Tutz, 1994; Allison, 1997). The condi-
tional probability of mortality given that the time inter-
val is reached can be factored into the product of condi-
tional probabilities:

Pr(Ti = ti|Ti > ti) = Pti ∑
ti−1

u=1

(1 − Pu) [2]

where Pti
and Pu are conditional probabilities of mortal-

ity given that no mortality has occurred at time ti and
u, respectively. Consequently, each right hand side
term in Eq. [2] is treated as resulting from independent
observations from each animal (Allison, 1997), thus per-
mitting the use of Eq. [1].

Two link functions, the logistic and complementary
log–log functions, were evaluated. These functions spec-
ify models with different metrics, and hence interpreta-
tions, since the logistic function provides a proportional
odds model and the complementary log–log function
provides a proportional hazards model (Allison, 1997).
Duration of time interval was included as a discrete
classification in all analyses due to model differences
associated with using these link functions. The comple-
mentary log–log model is invariant to the duration of
the time interval, whereas the logistic model is variant
to the duration of the time interval; hence, the logistic
model coefficients are not directly comparable across
time intervals of different durations (Allison, 1997). In
addition, the Weibull model is represented in the com-
plementary log–log model when the natural log of the
duration of the time interval is fitted as a covariate
(Allison, 1997). In this study, preliminary analysis com-
bined with the results of Southey et al. (2001) indicated
that the Weibull model would provide an adequate fit
to the data in this study (Figures 1, 2, and 3), but was
not considered in order to compare results from both
link functions.

Other explanatory variables considered in all models
were sex (two levels: male and female), type of birth
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Table 1. Hazard ratios and approximate standard
errors of the explanatory variables from birth to

weaning using a complementary log-log sire model
and different durations of time interval

Duration of time interval

Effecta Daily Weekly Fortnightly

Lamb sex
M-F 1.23 ± 0.07 1.23 ± 0.07 1.23 ± 0.07

Type of birth
S-M 0.30 ± 0.03 0.30 ± 0.03 0.30 ± 0.03
T-M 0.47 ± 0.04 0.47 ± 0.04 0.48 ± 0.04

Age of dam
1-4 2.97 ± 0.38 2.94 ± 0.37 2.94 ± 0.37
2-4 1.42 ± 0.16 1.41 ± 0.16 1.41 ± 0.16
3-4 0.85 ± 0.10 0.85 ± 0.10 0.85 ± 0.10

Nursery
N-Y 0.70 ± 0.08 0.70 ± 0.08 0.70 ± 0.08

aM-F = effect of male lambs as deviation from female lambs; S-M
= effect of single-born lambs as a deviation from multiple-born lambs;
T-M = effect of twin-born lambs as a deviation from multiple-born
lambs; 1-4 = effect of 1-yr-old ewes as a deviation of 4-yr or older
ewes; 2-4 = effect of 2-yr-old ewes as a deviation of 4-yr or older ewes;
3-4 = effect of 3-yr-old ewes as a deviation of 4-yr or older ewes; N-
Y = effect of lambs not raised in nursery as a deviation of lambs
raised in nursery.

(three levels: single, twin, and multiple), contemporary
group (18 levels), age of dam (four levels: 1, 2, 3, and
4+ yr old), and nursery code (two levels: Y if a lamb was
raised in the nursery and N otherwise). Contemporary
group was defined as the year of lambing and one of
two 35-d breeding periods within year when relevant.
Sire, animal, and maternal effects models were fitted
using ASREML (Gilmour et al., 1999). Heritabilities
were calculated using the variances of the link func-
tions: π2/3 and π2/6 for the logistic and complementary
log–log link functions, respectively (Fahrmeir and
Tutz, 1994).

Results

Estimates of explanatory variables were very similar
between sire, animal, and maternal effects models fitted
for each period using different link functions. Conse-
quently, only hazard ratios from explanatory variables
using sire models are presented in Tables 1, 2, and 3
for the periods from birth to weaning, birth to 365 d of
age, and weaning to 365 d of age, respectively. Adjusted
probabilities of mortality for each period (Figures 1, 2,
and 3) illustrate the similarity of the link functions.

Within each period, the duration of the time interval
generally showed similar estimates regardless of the
actual unit of time used. Figures 1, 2, and 3 also illus-
trate the lack of influence of the duration of time inter-
val when the adjusted probabilities of mortality were
compared to a cumulative probability from time inter-
val with shorter durations. Mortality probability
peaked at the end of the periods in each Figure and is
due to accumulation of time intervals with few mortal-
ity records. The estimates from the period of weaning

Table 2. Hazard ratios and approximate standard
errors of the explanatory variables from weaning to 365

d of age using a complementary log–log sire model
and different durations of time interval

Duration of time interval

Effecta Weekly Fortnightly Monthly

Lamb sex
M-F 1.40 ± 0.19 1.37 ± 0.19 1.26 ± 0.17

Type of birth
S-M 0.91 ± 0.23 0.89 ± 0.23 0.88 ± 0.22
T-M 0.72 ± 0.16 0.71 ± 0.16 0.70 ± 0.15

Age of dam
1-4 0.87 ± 0.26 0.88 ± 0.26 0.88 ± 0.26
2-4 0.95 ± 0.23 0.95 ± 0.23 0.96 ± 0.24
3-4 1.12 ± 0.26 1.12 ± 0.26 1.13 ± 0.27

Nursery
N-Y 0.63 ± 0.20 0.59 ± 0.19 0.59 ± 0.18

aM-F = effect of male lambs as deviation from female lambs; S-M
= effect of single-born lambs as a deviation from multiple-born lambs;
T-M = effect of twin-born lambs as a deviation from multiple-born
lambs; 1-4 = effect of 1-yr-old ewes as a deviation of 4-yr or older
ewes; 2-4 = effect of 2-yr-old ewes as a deviation of 4-yr or older ewes;
3-4 = effect of 3-yr-old ewes as a deviation of 4-yr or older ewes; N-
Y = effect of lambs not raised in nursery as a deviation of lambs
raised in nursery.

to 365 d of age (Figure 2) showed a smaller trend across
time interval of different durations and large standard
errors compared to the other periods. This trend can
be attributed to the few mortality records and high
degree of censoring since this trend was not observed
in the other periods.

In the period from birth to weaning (Table 1), male
lambs had 23% greater hazard of mortality than female.

Table 3. Hazard ratios and approximate standard
errors of the explanatory variables from birth to 365 d

of age using a complementary log–log sire model
and different durations of time interval

Duration of time interval

Effecta Weekly Fortnightly Monthly

Lamb sex
M-F 1.23 ± 0.06 1.24 ± 0.06 1.23 ± 0.06

Type of birth
S-M 0.42 ± 0.04 0.42 ± 0.04 0.43 ± 0.04
T-M 0.55 ± 0.04 0.55 ± 0.04 0.55 ± 0.04

Age of dam
1-4 2.43 ± 0.26 2.44 ± 0.26 2.45 ± 0.26
2-4 1.34 ± 0.13 1.34 ± 0.13 1.35 ± 0.13
3-4 0.95 ± 0.09 0.95 ± 0.09 0.95 ± 0.09

Nursery
N-Y 0.49 ± 0.04 0.47 ± 0.04 0.47 ± 0.04

aM-F = effect of male lambs as deviation from female lambs; S-M
= effect of single-born lambs as a deviation from multiple-born lambs;
T-M = effect of twin-born lambs as a deviation from multiple-born
lambs; 1-4 = effect of 1-yr-old ewes as a deviation of 4-yr or older
ewes; 2-4 = effect of 2-yr-old ewes as a deviation of 4-yr or older ewes;
3-4 = effect of 3-yr-old ewes as a deviation of 4-yr or older ewes; N-
Y = effect of lambs not raised in nursery as a deviation of lambs
raised in nursery.
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Figure 1. Adjusted probabilities (and SE) of lamb mor-
tality over weekly time intervals from birth to weaning
using complementary log–log (Clog), logistic (Log), and
Weibull sire models compared to cumulative daily time
intervals (Daily) from birth to weaning using a Clog
sire model.

Single and twin lambs had 70 and 53% lower hazard
of mortality than multiple-born lambs, respectively.
Lambs from 1- and 2-yr-old dams had significantly (P
< 0.01) greater hazard of mortality (194 and 41%, re-
spectively using a weekly duration) than lambs from
4-yr-old and older dams. Lambs from 3-yr-old dams had
a 15% lower hazard of mortality than lambs from 4-yr-
old and older dams, although this was nonsignificant.
Lambs raised with their dams had an approximately
30% lower hazard of mortality than lambs raised in
the nursery.

Similar interpretations of the birth to weaning period
are applicable to the weaning to 365 d of age period

Figure 2. Adjusted probabilities (and SE) of lamb mor-
tality over fortnightly time intervals from weaning to 365
d of age using complementary log–log (Clog), logistic
(Log), and Weibull sire models compared to cumulative
weekly time intervals (Weekly) from weaning to 365 d
of age using a Clog sire model.

Figure 3. Adjusted probabilities (and SE) of lamb mor-
tality over fortnightly time intervals from birth to 365 d
of age using complementary log–log (Clog), logistic (Log),
and Weibull sire models compared to cumulative weekly
time intervals (Weekly) from birth to 365 d of age using
a Clog sire model.

(Table 2) and birth to 365 d of age period (Table 3). The
estimates from the birth to 365 d of age period were,
in general, more similar to the birth to weaning period
than to the weaning to 365 d of age period. For the
period from weaning to 365 d of age, reduced and non-
significant differences due to type of birth and age of
dam were observed compared with the other periods.
The influence of lamb sex in the weaning to 365 d of
age period was greater than the other periods, although
this decreased with greater durations. This result is
likely due to few mortality records in this period since
the monthly time interval values were closer to the
other periods. The hazard of mortality due to nursery
raising was increased slightly in the weaning to 365 d
of age period, and this resulted in lambs raised by their
dams having a 41% hazard of mortality for lambs raised
in the nursery in the period using either fortnightly or
monthly durations from the birth to weaning period.

Estimates of sire, additive genetic and maternal vari-
ances, and the covariance between additive genetic and
maternal effects were very similar between link func-
tions and different durations of time interval in the
birth to weaning (Table 4) and birth to 365 d of age
(Table 5) periods. In the weaning to 365 d of age period,
no maternal effects were detected and sire and additive
genetic effects were similar across link functions and
durations of time intervals (Table 6). Correlations be-
tween breeding values were typically greater than 99%
across link functions and different durations of time
intervals, indicating that the same group of individuals
would be selected to improve lamb mortality. For exam-
ple, from birth to weaning, the same top 10 sires were
identified across the different link functions and time
interval durations.

Heritability estimates in the complementary log–log
analysis were approximately double the estimates in
the logistic analysis for all periods and time interval
durations. This result is expected since the variance of
the complementary log–log function is half the variance
of the logistic function. Sire-model heritability esti-
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Table 4. Variance components and heritability estimates from birth to weaning with different durations of time
interval using a discrete survival model with logistic or complementary log–log (Clog) link function

Duration of time interval

Daily Weekly Fortnightly

Logistic Clog Logistic Clog Logistic Clog

Sire effects model
Sire variance 0.080 ± 0.027 0.080 ± 0.026 0.081 ± 0.028 0.079 ± 0.026 0.082 ± 0.029 0.077 ± 0.026
Heritability 0.096 ± 0.031 0.185 ± 0.058 0.096 ± 0.032 0.184 ± 0.057 0.097 ± 0.033 0.179 ± 0.057

Animal effects model
Additive genetic variance 0.219 ± 0.073 0.224 ± 0.071 0.193 ± 0.071 0.195 ± 0.066 0.183 ± 0.070 0.183 ± 0.064
Heritability 0.062 ± 0.020 0.120 ± 0.034 0.055 ± 0.019 0.106 ± 0.032 0.053 ± 0.019 0.100 ± 0.031

Maternal effects model
Additive genetic variance (A) 0.186 ± 0.085 0.187 ± 0.082 0.161 ± 0.082 0.165 ± 0.077 0.149 ± 0.082 0.152 ± 0.074
Maternal variance (M) 0.306 ± 0.094 0.309 ± 0.092 0.286 ± 0.093 0.291 ± 0.088 0.274 ± 0.093 0.277 ± 0.085
Covariance (A, M) −0.167 ± 0.085 −0.166 ± 0.083 −0.151 ± 0.083 −0.157 ± 0.079 −0.141 ± 0.083 −0.147 ± 0.076
Additive genetic heritability 0.054 ± 0.025 0.103 ± 0.046 0.047 ± 0.024 0.092 ± 0.043 0.044 ± 0.024 0.085 ± 0.042
Maternal heritability 0.089 ± 0.028 0.171 ± 0.053 0.083 ± 0.028 0.163 ± 0.051 0.080 ± 0.027 0.156 ± 0.050
Correlation (A, M) −0.699 ± 0.205 −0.694 ± 0.202 −0.702 ± 0.226 −0.718 ± 0.208 −0.696 ± 0.242 −0.716 ± 0.217

mates were greater than those from animal and mater-
nal effects models, although these models are not lin-
early equivalent. This difference could be attributed
to overdispersion since three quarters of the additive
genetic variance is unaccounted for in the sire model
compared to the animal and maternal models. Herita-
bility estimates were slightly higher in the animal
model than in the maternal effects model. This result
could be associated with some of the variability between
animals being due to maternal effects. Estimates of
the correlation between direct additive and maternal
effects were similar across periods and time-interval
durations since the correlation does not depend on the
variance of the link function.

Discussion

The implemented discrete time survival analysis pro-
vided an alternative approach to the mortality study

Table 5. Variance components and heritability estimates from birth to 365 d of age with different durations of time
interval using a discrete survival model with logistic or complementary log–log (Clog) link function

Duration of time interval

Weekly Fortnightly Monthly

Logistic Clog Logistic Clog Logistic Clog

Sire effects model
Sire variance 0.058 ± 0.019 0.057 ± 0.019 0.058 ± 0.020 0.055 ± 0.018 0.060 ± 0.021 0.055 ± 0.018
Heritability 0.069 ± 0.023 0.133 ± 0.042 0.069 ± 0.023 0.130 ± 0.042 0.072 ± 0.024 0.130 ± 0.042

Animal effects model
Additive genetic variance 0.168 ± 0.054 0.164 ± 0.051 0.162 ± 0.053 0.157 ± 0.050 0.153 ± 0.053 0.142 ± 0.047
Heritability 0.049 ± 0.015 0.091 ± 0.026 0.047 ± 0.015 0.087 ± 0.025 0.044 ± 0.015 0.079 ± 0.024

Maternal effects model
Additive genetic variance (A) 0.144 ± 0.064 0.141 ± 0.061 0.137 ± 0.064 0.132 ± 0.059 0.128 ± 0.064 0.119 ± 0.057
Maternal variance (M) 0.191 ± 0.065 0.194 ± 0.062 0.181 ± 0.064 0.184 ± 0.061 0.172 ± 0.064 0.169 ± 0.058
Covariance (A, M) −0.111 ± 0.059 −0.113 ± 0.057 −0.103 ± 0.059 −0.104 ± 0.055 −0.096 ± 0.059 −0.095 ± 0.053
Direct heritability 0.042 ± 0.019 0.080 ± 0.035 0.040 ± 0.019 0.075 ± 0.034 0.038 ± 0.019 0.068 ± 0.032
Maternal heritability 0.056 ± 0.019 0.110 ± 0.036 0.053 ± 0.019 0.105 ± 0.035 0.051 ± 0.019 0.097 ± 0.034
Correlation (A, M) −0.669 ± 0.208 −0.682 ± 0.199 −0.654 ± 0.220 −0.665 ± 0.210 −0.648 ± 0.236 −0.669 ± 0.221

than that undertaken by Southey et al. (2001). Esti-
mates of the explanatory variables reported by Southey
et al. (2001) using continuous time survival models
were very similar to those obtained in this study. This
result was expected since Ingram and Kleinman (1989)
also empirically showed that the similarity between
proportion hazards and logistic models assuming that
there were no differential censoring rates within ex-
planatory variables. More formally, Doskum and Gasko
(1990) proved the direct correspondence between binary
data analysis and continuous time survival analysis.

The estimates of the sire variance in this study were
very similar to corresponding estimates reported by
Southey et al. (2001). Estimates of the sire variance in
the birth to weaning and birth to 365 d of age periods
using a discrete time approach were lower than the
estimates for the same periods using Weibull and Logis-
tic sire models reported by Southey et al. (2001). In the
weaning to 365 d of age period, the estimates from the
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Table 6. Variance components and heritability estimates from weaning to 365 d of age with different durations of
time interval using a discrete survival model with logistic or complementary log-log (Clog) link function

Duration of time interval

Weekly Fortnightly Monthly

Link Logistic Clog Logistic Clog Logistic Clog

Sire effects model
Sire variance 0.090 ± 0.088 0.090 ± 0.087 0.088 ± 0.087 0.088 ± 0.087 0.087 ± 0.088 0.087 ± 0.086
Heritability 0.107 ± 0.101 0.207 ± 0.190 0.104 ± 0.101 0.203 ± 0.190 0.104 ± 0.101 0.201 ± 0.190

Animal effects model
Additive genetic variance 0.191 ± 0.203 0.192 ± 0.201 0.188 ± 0.202 0.190 ± 0.201 0.185 ± 0.202 0.189 ± 0.200
Heritability 0.055 ± 0.055 0.105 ± 0.098 0.054 ± 0.055 0.103 ± 0.098 0.053 ± 0.055 0.103 ± 0.098

discrete time approach were higher than the estimates
from Weibull and Logistic sire models reported by
Southey et al. (2001). The difference in heritability esti-
mates between the logistic sire models and the Weibull
and complementary log–log sire models corresponds to
the difference in the link function variance. Greater
estimates of the additive genetic and maternal vari-
ances, and consequently, greater heritability estimates,
were observed in the discrete time logistic models than
the cumulative logistic animal model of Southey et
al. (2001).

The similarity of estimates between logistic and com-
plementary log–log models is expected since these func-
tions have very similar properties at the range of mor-
talities observed in the data set (Fahrmeir and Tutz,
1994). In addition, both the logistic and complementary
log–log models can be derived from the Cox proportional
hazards model as a first-order approximation (Cox,
1972; Kalbfleisch and Prentice, 1973). Although Cox
(1972) proposed the logistic model as an approximation,
coefficients from a complementary log–log model have
the same relative risk interpretation as the Cox propor-
tional hazards model (Kalbfleisch and Prentice, 1973;
Allison, 1997). However, the logistic and complemen-
tary log–log models differed from the Cox proportional
hazards model estimates reported by Southey et al.
(2001).

Lower estimates from the Cox proportional hazards
model compared to Weibull or discrete–time sire models
are probably associated with the different modeling of
the information contained by the data since the Cox
proportional hazards model uses the marginal distribu-
tion of ranks (Kalbfleisch and Prentice, 1973). Assum-
ing a log-linear hazard rate, the appropriate distribu-
tion for the Cox proportional hazards model is the ex-
treme-value distribution (Kalbfleisch and Prentice,
1973; Doksum and Gasko, 1990). Consequently, using
the extreme-value distribution function, heritability es-
timates from the Cox proportional hazards sire model
are lower than estimates from the Weibull and comple-
mentary log–log sire models, but greater than estimates
from the logistic sire models. More generally, given an
unspecified baseline hazard function, the Cox propor-
tional hazards model is a linear transformation model

with an unknown transformation (Doksum and Gasko,
1990; Fahrmeir and Tutz, 1994). Since the Cox propor-
tional hazards model is distribution free, Kent and
O’Quigley (1988) proposed using a value of one when
computing the proportion of variance explained by the
Cox proportional hazards model. Yadzi et al. (2002)
also suggested a value of one based on the definition
of reliability under selection index and mixed-model
theory. Using this value to compute heritability instead
of 1.64 (π2/6) would result in greater heritability esti-
mates, although all models would still have similar
variance component estimates.

The approach used in this study involved the group-
ing of a continuous variable into discrete time intervals.
This is expected to result in a loss of information since
the likelihood factors into the product of the conditional
independent periods (Fahrmeir and Tutz, 1994). Gould
and Lawless (1988) showed that the loss of information
has a minimal effect on efficiency of estimation that
is similar with results reported in this study. When
comparing time intervals with different durations, the
additional information added does not change the stan-
dard errors of estimates (Allison, 1997). Therefore, the
similarity of results from the discrete time models to
the continuous time models was expected and illus-
trates that the discrete time analysis is a valid alterna-
tive approach in this data set.

In the present analysis, the time intervals were as-
sumed and treated as independent. Xu and Brookmeyer
(1997) proved that this approach could be applied to
each time point provided that for each point, the ex-
pected value of the product of contributions for each
time interval is the same as the product of expected
values of each time interval. The consistencies of the
explanatory effects and sire variance estimates be-
tween the continuous- and discrete-time sire models
appear to validate this result. Estimates of variance
components that generally decreased when duration
was increased, particularly for the animal and maternal
effects models. However, standard errors also de-
creased, indicating this was directly associated with
information content since the greater durations incor-
porated more mortality records than the lesser du-
rations.
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Experimental results presented in this study and by
Southey et al. (2001) provide examples of the theoretical
relationships between different approaches to model
survival data, such as mortality and longevity. Discrete
and continuous time approaches are generally expected
to provide similar results if exact time of mortality is
known. When the exact time of mortality is unknown,
the results from Ingram and Kleinman (1989) and this
study indicate that the discrete approach will provide
results similar to those when the exact time of mortality
is known. The cumulative binary approach also pro-
vided similar estimates in this data set, but required
additional assumptions to address censoring (Southey
et al., 2001). Larger differences between the approaches
than the ones seen in this study are expected with
greater mortality rates and differential censoring, al-
though Ingram and Kleinman (1989) showed that the
discrete- and continuous-time approaches provided
similar results in these situations.

Implications

Results of this study indicate that discrete-time sur-
vival methods are a viable alternative to continuous-
time survival methods to estimate fixed effects and vari-
ance components. The suitability of cumulative-binary,
continuous-time, and discrete-time approaches de-
pends on the data structure analyzed and the model
assumptions. The similarity of the results suggests that
cumulative-binary, continuous-time, and discrete-time
approaches can be used to analyze lamb mortality and
other survival data.
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